Find the general solution of each of the following equations:

Question:

Find the general solution of each of the following equations:

sin x = tan x

 

Solution:

To Find: General solution.

Given: $\sin x=\tan x \Rightarrow \sin x=\sin x \div \cos x$

So $\sin x=0$ or $\cos x=1=\cos (0)$

Formula used: $\sin \theta=0 \Rightarrow \theta=n \pi, n \in \mid$ and $\cos \theta=\cos \alpha \Rightarrow \theta=2 k \pi \pm \alpha, k \in \mid$

$x=n \pi$ or $x=2 k \pi$ where $n, k \in l$

So general solution is $x=n \pi$ or $x=2 k \pi$ where $n, k \in \mid$

 

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now