Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$
Given:- Function $f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$
Theorem:- Let $\mathrm{f}$ be a differentiable real function defined on an open interval $(\mathrm{a}, \mathrm{b})$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\frac{3}{2} x^{4}-4 x^{3}-45 x^{2}+51$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{3}{2} \mathrm{x}^{4}-4 \mathrm{x}^{3}-45 \mathrm{x}^{2}+51\right)$
$\Rightarrow f^{\prime}(x)=6 x^{3}-12 x^{2}-90 x$
$\Rightarrow f^{\prime}(x)=6 x\left(x^{2}-2 x-15\right)$
$\Rightarrow f^{\prime}(x)=6 x\left(x^{2}-5 x+3 x-15\right)$
$\Rightarrow f^{\prime}(x)=6 x(x-5)(x+3)$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 6 x(x-5)(x+3)>0$
$\Rightarrow x(x-5)(x+3)>0$
$\Rightarrow-3 $\Rightarrow x \in(-3,0) \cup(5, \infty)$ Thus $f(x)$ is increasing on interval $(-3,0) \cup(5, \infty)$ Again, For $f(x)$ to be decreasing, we must have $f^{\prime}(x)<0$ $\Rightarrow 6 x(x-5)(x+3)>0$ $\Rightarrow x(x-5)(x+3)>0$ $\Rightarrow-\infty $\Rightarrow x \in(-\infty,-3) \cup(0,5)$ Thus $f(x)$ is decreasing on interval $(-\infty,-3) \cup(0,5)$