Find the intervals in which the following functions are increasing or decreasing.
$f(x)=x^{2}+2 x-5$
Given:- Function $f(x)=x^{2}+2 x-5$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{2}+2 x-5$
$\Rightarrow f(x)=\frac{d}{d x}\left(x^{2}+2 x-5\right)$
$\Rightarrow f^{\prime}(x)=2 x+2$
For $f(x)$ to be increasing, we must have
$\Rightarrow f^{\prime}(x)>0$
$\Rightarrow 2 x+2>0$
$\Rightarrow 2 x<-2$
$\Rightarrow x<-\frac{2}{2}$
$\Rightarrow x<-1$
$\Rightarrow x \in(-\infty,-1)$
Thus $f(x)$ is increasing on interval $(-\infty,-1)$
Again, For $f(x)$ to be increasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow 2 x+2<0$
$\Rightarrow 2 x>-2$
$\Rightarrow x>-\frac{2}{2}$
$\Rightarrow x>-1$
$\Rightarrow x \in(-1, \infty)$
Thus $f(x)$ is decreasing on interval $x \in(-1, \infty)$