Find the intervals in which the following functions are increasing or decreasing.
$f(x)=\frac{3}{10} x^{4}-\frac{4}{5} x^{3}-3 x^{2}+\frac{36}{5} x+11$
Given:- Function $\mathrm{f}(\mathrm{x})=\frac{3}{10} \mathrm{x}^{4}-\frac{4}{5} \mathrm{x}^{3}-3 \mathrm{x}^{2}+\frac{36}{5} \mathrm{x}+11$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$\mathrm{f}(\mathrm{x})=\frac{3}{10} \mathrm{x}^{4}-\frac{4}{5} \mathrm{x}^{3}-3 \mathrm{x}^{2}+\frac{36}{5} \mathrm{x}+11$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{3}{10} \mathrm{x}^{4}-\frac{4}{5} \mathrm{x}^{3}-3 \mathrm{x}^{2}+\frac{36}{5} \mathrm{x}+11\right)$
$\Rightarrow \mathrm{f}(\mathrm{x})=4 \times \frac{3}{10} \mathrm{x}^{3}-3 \times \frac{4}{5} \mathrm{x}^{2}-6 \mathrm{x}+\frac{36}{5}$
For $f(x)$ lets find critical point, we must have
$\Rightarrow f^{\prime}(x)=0$
$\Rightarrow \frac{12}{10} x^{3}-\frac{12}{5} x^{2}-6 x+\frac{36}{5}=0$
$\Rightarrow \frac{6}{5}(x-1)(x+2)(x-3)=0$
$\Rightarrow x=1,-2,3$
Now, lets check values of $f(x)$ between different ranges
Here points $x=1,-2,3$ divide the number line into disjoint intervals namely, $(-\infty,-2),(-2,1),(1,3)$ and $(3,$, $\infty)$
Lets consider interval $(-\infty,-2)$
In this case, we have $x-1<0, x+2<0$ and $x-3<0$
Therefore, $f^{\prime}(x)<0$ when $-\infty Thus, $f(x)$ is strictly decreasing on interval $x \in(-\infty,-2)$ consider interval $(-2,1)$ In this case, we have $x-1<0, x+2>0$ and $x-3<0$ Therefore, $f^{\prime}(x)>0$ when $-2 Thus, $f(x)$ is strictly increases on interval $x \in(-2,1)$ Now, consider interval $(1,3)$ In this case, we have $x-1>0, x+2>0$ and $x-3<0$ Therefore, $f^{\prime}(x)<0$ when $1 Thus, $f(x)$ is strictly decreases on interval $x \in(1,3)$ finally, consider interval $(3, \infty)$ In this case, we have $x-1>0, x+2>0$ and $x-3>0$ Therefore, $f^{\prime}(x)>0$ when $x>3$ Thus, $f(x)$ is strictly increases on interval $x \in(3, \infty)$