Find the intervals in which the following functions are increasing or decreasing.
$f(x)=10-6 x-2 x^{2}$
Given:- Function $f(x)=10-6 x-2 x^{2}$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for $a l l_{x \in}(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=10-6 x-2 x^{2}$
$\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(10-6 x-2 x^{2}\right)$
$\Rightarrow f^{\prime}(x)=-6-4 x$
For $f(x)$ to be increasing, we must have
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
$\Rightarrow-6-4 \mathrm{x}>0$
$\Rightarrow-4 \mathrm{x}>6$
$\Rightarrow \mathrm{x}<-\frac{6}{4}$
$\Rightarrow \mathrm{x}<-\frac{3}{2}$
$\Rightarrow \mathrm{x} \in\left(-\infty,-\frac{3}{2}\right)$
Thus $f(x)$ is increasing on the interval $\left(-\infty,-\frac{3}{2}\right)$
Again, For $f(x)$ to be increasing, we must have
$f^{\prime}(x)<0$
$\Rightarrow-6-4 x<0$
$\Rightarrow-4 x<6$
$\Rightarrow x>-\frac{6}{4}$
$\Rightarrow x>-\frac{3}{2}$
$\Rightarrow x \in\left(-\frac{3}{2}, \infty\right)$
Thus $f(x)$ is decreasing on interval $x \in\left(-\frac{3}{2}, \infty\right)$