Find the inverse of each of the matrices (if it exists).
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$.
We have,
$|A|=1\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1$
Now,
$A_{11}=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1, A_{12}=0, A_{13}=0$
$A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha$
$A_{31}=0, A_{32}=-\sin \alpha, A_{33}=\cos \alpha$
$\therefore \operatorname{adj} A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|} \cdot$ adjA $=-\left[\begin{array}{lll}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.