Question:
Find the inverse of each of the matrices, if it exists.
$\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$
Solution:
Let $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$
We know that A = IA
Applying $R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}$, we have:
$\left[\begin{array}{ll}0 & 0 \\ 4 & 2\end{array}\right]=\left[\begin{array}{cc}1 & -\frac{1}{2} \\ 0 & 1\end{array}\right] A$
Now, in the above equation, we can see all the zeros in the first row of the matrix on the L.H.S.
Therefore, $A^{-1}$ does not exist.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.