Find the length of the hypotenuse of an isosceles right-angled triangle whose area is $200 \mathrm{~cm}^{2} .$ Also, find its perimeter. [Given: $\sqrt{2}=1.41$ ]
In a right isosceles triangle, base $=$ height $=a$
Therefore,
Area of the triangle $=\frac{1}{2} \times$ base $\times$ height $=\frac{1}{2} \times a \times a=\frac{1}{2} a^{2}$
Further, given that area of isosceles right triangle = 200 cm2
$\Rightarrow \frac{1}{2} a^{2}=200$
$\Rightarrow a^{2}=400$
or, $a=\sqrt{400}=20 \mathrm{~cm}$
In an isosceles right triangle, two sides are equal ('a') and the third side is the hypotenuse, i.e. 'c'
Therefore, $c=\sqrt{a^{2}+a^{2}}$
$=\sqrt{2 a^{2}}$
$=a \sqrt{2}$
$=20 \times 1.41$
$=28.2 \mathrm{~cm}$
Perimeter of the triangle $=a+a+c$
$=20+20+28.2$
= 68.2 cm
The length of the hypotenuse is 28.2 cm and the perimeter of the triangle is 68.2 cm.