Find the mean deviation about the mean for the data
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
The given data is
38, 70, 48, 40, 42, 55, 63, 46, 54, 44
Mean of the given data,
$\bar{x}=\frac{38+70+48+40+42+55+63+46+54+44}{10}=\frac{500}{10}=50$
The deviations of the respective observations from the mean $\bar{x}$, i.e. $x_{i}-\bar{x}$, are
$-12,20,-2,-10,-8,5,13,-4,4,-6$
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
12, 20, 2, 10, 8, 5, 13, 4, 4, 6
The required mean deviation about the mean is
$\operatorname{M.D} \cdot(\bar{x})=\frac{\sum_{i=1}^{10}\left|x_{t}-\bar{x}\right|}{10}$
$=\frac{12+20+2+10+8+5+13+4+4+6}{10}$
$=\frac{84}{10}$
$=8.4$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.