Find the modulus and the argument of the complex numberĀ $z=-1-i \sqrt{3}$
$z=-1-i \sqrt{3}$
Let $r \cos \theta=-1$ and $r \sin \theta=-\sqrt{3}$
On squaring and adding, we obtain
$(r \cos \theta)^{2}+(r \sin \theta)^{2}=(-1)^{2}+(-\sqrt{3})^{2}$
$\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+3$
$\Rightarrow \mathrm{r}^{2}=4 \quad\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$\Rightarrow r=\sqrt{4}=2 \quad$ [Conventionally, $r>0$ ]
$\therefore$ Modulus $=2$
$\therefore 2 \cos \theta=-1$ and $2 \sin \theta=-\sqrt{3}$
$\Rightarrow \cos \theta=\frac{-1}{2}$ and $\sin \theta=\frac{-\sqrt{3}}{2}$
Since both the values of $\sin \theta$ and $\cos \theta$ are negative and $\sin \theta$ and $\cos \theta$ are negative in III quadrant,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=\frac{-2 \pi}{3}$
Thus, the modulus and argument of the complex number $-1-\sqrt{3} i$ are 2 and $\frac{-2 \pi}{3}$ respectively.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.