Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\left(\mathrm{i}^{25}\right)^{3}$
$=\mathrm{i}^{75}$
$=i^{4 n+3}$ where $n=18$
Since $i^{4 n+3}=-i$
$\mathrm{i}^{75}=-\mathrm{i}$
Let $Z=-i=r(\cos \theta+i \sin \theta)$
Now , separating real and complex part , we get
0 = rcosθ ……….eq.1
-1 = rsinθ …………eq.2
Squaring and adding eq.1 and eq.2, we get
$1=r^{2}$
Since r is always a positive no., therefore,
r = 1,
Hence its modulus is 1.
Now , dividing eq.2 by eq.1 , we get
$\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{0}$
$\tan \theta=-\infty$
Since $\cos \theta=0, \sin \theta=-1$ and $\tan \theta=-\infty$. therefore the $\theta$ lies in fourth quadrant.
$\operatorname{Tan} \theta=-\infty$, therefore $\theta=-\frac{\pi}{2}$
Representing the complex no. in its polar form will be
$\mathrm{Z}=1\left\{\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right\}$