Find the point on the curve


Find the point on the curve $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{16}=1$ at which the tangents are parallel to $\mathrm{y}$ - axis


Since the tangent is parallel to $\mathrm{y}$-axis, its slope is not defined, then the normal is parallel to $\mathrm{x}$-axis whose The Slope is zero.

i.e., $\frac{-1}{\frac{d y}{d x}}=0$

$\Rightarrow \frac{-1}{\frac{-16 x}{9 y}}=0$

$\Rightarrow \frac{-9 y}{16 x}=0$

$\Rightarrow y=0$

Substituting $y=0$ in $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$

$\Rightarrow \frac{x^{2}}{9}+\frac{0^{2}}{16}=1$

$\Rightarrow x^{2}=9$

$\Rightarrow x=\pm 3$

Thus, the required point is $(3,0) \&(-3,0)$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now