Question:
Find the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
Solution:
Let $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=y$. Then, $\cos y=\frac{\sqrt{3}}{2}=\cos \left(\frac{\pi}{6}\right)$.
We know that the range of the principal value branch of $\cos ^{-1}$ is
$[0, \pi]$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$.
Therefore, the principal value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.