Question.
Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2} .\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
Let the radius of the sphere be r.
Surface area of sphere = 154
$\therefore 4 m r^{2}=154 \mathrm{~cm}^{2}$
$r^{2}=\left(\frac{154 \times 7}{4 \times 22}\right) \mathrm{cm}^{2}=\left(\frac{7 \times 7}{2 \times 2}\right) \mathrm{cm}^{2}$
$r=\left(\frac{7}{2}\right) \mathrm{cm}=3.5 \mathrm{~cm}$
Therefore, the radius of the sphere whose surface area is $154 \mathrm{~cm}^{2}$ is $3.5 \mathrm{~cm}$.
Let the radius of the sphere be r.
Surface area of sphere = 154
$\therefore 4 m r^{2}=154 \mathrm{~cm}^{2}$
$r^{2}=\left(\frac{154 \times 7}{4 \times 22}\right) \mathrm{cm}^{2}=\left(\frac{7 \times 7}{2 \times 2}\right) \mathrm{cm}^{2}$
$r=\left(\frac{7}{2}\right) \mathrm{cm}=3.5 \mathrm{~cm}$
Therefore, the radius of the sphere whose surface area is $154 \mathrm{~cm}^{2}$ is $3.5 \mathrm{~cm}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.