Question:
Find the second order derivatives of the function.
$x^{3} \log x$
Solution:
Let $y=x^{3} \log x$
Then,
$\frac{d y}{d x}=\frac{d}{d x}\left[x^{3} \log x\right]=\log x \cdot \frac{d}{d x}\left(x^{3}\right)+x^{3} \cdot \frac{d}{d x}(\log x)$
$=\log x \cdot 3 x^{2}+x^{3} \cdot \frac{1}{x}=\log x \cdot 3 x^{2}+x^{2}$
$=x^{2}(1+3 \log x)$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[x^{2}(1+3 \log x)\right]$
$=(1+3 \log x) \cdot \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}(1+3 \log x)$
$=(1+3 \log x) \cdot 2 x+x^{2} \cdot \frac{3}{x}$
$=2 x+6 x \log x+3 x$
$=5 x+6 x \log x$
$=x(5+6 \log x)$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.