Find the second order derivatives of the function.

Question:

Find the second order derivatives of the function.

$\log (\log x)$

Solution:

Let $y=\log (\log x)$

Then,

$\frac{d y}{d x}=\frac{d}{d x}[\log (\log x)]=\frac{1}{\log x} \cdot \frac{d}{d x}(\log x)=\frac{1}{x \log x}=(x \log x)^{-1}$

$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[(x \log x)^{-1}\right]=(-1) \cdot(x \log x)^{-2} \cdot \frac{d}{d x}(x \log x)$\

$=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log x)\right]$

$=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]=\frac{-(1+\log x)}{(x \log x)^{2}}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now