Question:
Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $x=10$.
Solution:
The given curve is $y=\frac{x-1}{x-2}$.
$\therefore \frac{d y}{d x}=\frac{(x-2)(1)-(x-1)(1)}{(x-2)^{2}}$
$=\frac{x-2-x+1}{(x-2)^{2}}=\frac{-1}{(x-2)^{2}}$
Thus, the slope of the tangent at x = 10 is given by,
$\left.\left.\frac{d y}{d x}\right]_{x=10}=\frac{-1}{(x-2)^{2}}\right]_{x=10}=\frac{-1}{(10-2)^{2}}=\frac{-1}{64}$
Hence, the slope of the tangent at $x=10$ is $\frac{-1}{64}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.