Question:
Find the sum of odd integers from 1 to 2001.
Solution:
The odd integers from 1 to 2001 are 1, 3, 5, …1999, 2001.
This sequence forms an A.P.
Here, first term, a = 1
Common difference, d = 2
Here, $a+(n-1) d=2001$
$\Rightarrow 1+(n-1)(2)=2001$
$\Rightarrow 2 n-2=2000$
$\Rightarrow n=1001$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=\frac{1001}{2} \times 2002$
$=1001 \times 1001$
$=1002001$
Thus, the sum of odd numbers from 1 to 2001 is 1002001.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.