Find the sum of the GP :


Find the sum of the GP :

$1-a+a^{2}-a^{3}+\ldots$ to $n$ terms $(a \neq 1)$



Sum of a G.P. series is represented by the formula $\mathrm{S}_{\mathrm{n}}=\mathrm{a} \frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}$ 

when r≠1. ‘Sn’ represents the sum of the G.P. series upto nth terms, ‘a’ represents the first term, ‘r’ represents the common ratio and ‘n’ represents the number of terms.


a = 1

$r=$ (ratio between the $n$ term and $n-1$ term) $-a \div 1=-a$

n terms

$\therefore \mathrm{S}_{\mathrm{n}}=1 \times \frac{(-\mathrm{a})^{\mathrm{n}}-1}{-\mathrm{a}-1}$

[Multiplying both numerator and denominator by -1]

$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{1-(-\mathrm{a})^{\mathrm{n}}}{1+\mathrm{a}}$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now