Find the sum of the series 1 + 4 + 7 + 10 + …. + x = 715.
Note: The sum of the series is already provided in the question. The solution to find x is given below.
Let there be n terms in the series
$x=1+(n-1) 3$
$=3 n-2$
Let S be the sum of the series
$S=\frac{n}{2}[1+x]=715$
$\Rightarrow \mathrm{n}[1+3 \mathrm{n}-2]=1430$
$\Rightarrow \mathrm{n}+3 \mathrm{n}^{2}-2 \mathrm{n}=1430$
$\Rightarrow 3 \mathrm{n}^{2}-\mathrm{n}-1430=0$
Applying Sri Dhar Acharya formula, we get
$\mathrm{n}=\frac{1 \pm 131}{2 \times 3}$
$\mathrm{n}=\frac{132}{6}$ or $\frac{130}{6}$
⇒ n = 22 as n cannot be a fraction
Therefore $x=3 \times 22-2=64$
The value of $x$ is 64
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.