Question.
Find the surface area of a sphere of diameter:
(i) $14 \mathrm{~cm}$
(ii) $21 \mathrm{~cm}$
(iii) $3.5 \mathrm{~m}$
[Assume $\left.\pi=\frac{22}{7}\right]$
(i) $14 \mathrm{~cm}$
(ii) $21 \mathrm{~cm}$
(iii) $3.5 \mathrm{~m}$
[Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
(i) Radius $(r)$ of sphere $=\frac{\text { Diameter }}{2}=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}$
$=\left(4 \times \frac{22}{7} \times(7)^{2}\right) \mathrm{cm}^{2}$
$=(88 \times 7) \mathrm{cm}^{2}$
$=616 \mathrm{~cm}^{2}$
Therefore, the surface area of a sphere having diameter $14 \mathrm{~cm}$ is $616 \mathrm{~cm}^{2}$.
(ii) Radius $(r)$ of sphere $=\frac{21}{2}=10.5 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}$
$=\left[4 \times \frac{22}{7} \times(10.5)^{2}\right] \mathrm{cm}^{2}$
$=1386 \mathrm{~cm}^{2}$
Therefore, the surface area of a sphere having diameter $21 \mathrm{~cm}$ is $1386 \mathrm{~cm}^{2}$.
(iii) Radius $(r)$ of sphere $=\frac{3.5}{2}=1.75 \mathrm{~m}$
Surface area of sphere $=4 \pi r^{2}$
$=\left[4 \times \frac{22}{7} \times(1.75)^{2}\right] \mathrm{m}^{2}$
$=38.5 \mathrm{~m}^{2}$
Therefore, the surface area of the sphere having diameter $3.5 \mathrm{~m}$ is $38.5 \mathrm{~m}^{2}$.
(i) Radius $(r)$ of sphere $=\frac{\text { Diameter }}{2}=\left(\frac{14}{2}\right) \mathrm{cm}=7 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}$
$=\left(4 \times \frac{22}{7} \times(7)^{2}\right) \mathrm{cm}^{2}$
$=(88 \times 7) \mathrm{cm}^{2}$
$=616 \mathrm{~cm}^{2}$
Therefore, the surface area of a sphere having diameter $14 \mathrm{~cm}$ is $616 \mathrm{~cm}^{2}$.
(ii) Radius $(r)$ of sphere $=\frac{21}{2}=10.5 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}$
$=\left[4 \times \frac{22}{7} \times(10.5)^{2}\right] \mathrm{cm}^{2}$
$=1386 \mathrm{~cm}^{2}$
Therefore, the surface area of a sphere having diameter $21 \mathrm{~cm}$ is $1386 \mathrm{~cm}^{2}$.
(iii) Radius $(r)$ of sphere $=\frac{3.5}{2}=1.75 \mathrm{~m}$
Surface area of sphere $=4 \pi r^{2}$
$=\left[4 \times \frac{22}{7} \times(1.75)^{2}\right] \mathrm{m}^{2}$
$=38.5 \mathrm{~m}^{2}$
Therefore, the surface area of the sphere having diameter $3.5 \mathrm{~m}$ is $38.5 \mathrm{~m}^{2}$.