Find the value


Find the value

$a^{2}+b^{2}+2(a b+b c+c a)$



$=a^{2}+b^{2}+2 a b+2 b c+2 c a$

Using the identity $(p+q)^{2}=p^{2}+q^{2}+2 p q$

We get,

$=(a+b)^{2}+2 b c+2 c a$

$=(a+b)^{2}+2 c(b+a)$


Or $(a+b)^{2}+2 c(a+b)$

Taking (a + b) common

$=(a+b)(a+b+2 c)$


$\therefore a^{2}+b^{2}+2(a b+b c+c a)=(a+b)(a+b+2 c)$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now