Find the value
Question:

If $\frac{a}{b}+\frac{b}{a}=-1$ then $\left(a^{3}-b^{3}\right)=?$

(a) −3
(b) −2
(c) −1
(d) 0

 

Solution:

$\frac{a}{b}+\frac{b}{a}=-1$

$\Rightarrow \frac{a^{2}+b^{2}}{a b}=-1$

$\Rightarrow a^{2}+b^{2}=-a b$

$\Rightarrow a^{2}+b^{2}+a b=0$

Thus, we have:

$\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+b^{2}+a b\right)$

$=(a-b) \times 0$

$=0$

Administrator

Leave a comment

Please enter comment.
Please enter your name.