Find the value

Question:

Find the value

$a^{12}+b^{12}$

Solution:

$=\left(a^{4}\right)^{3}+\left(b^{4}\right)^{3}$

$=\left(a^{4}+b^{4}\right)\left(\left(a^{4}\right)^{2}-a^{4} \times b^{4}+\left(b^{4}\right)^{2}\right)$

$\therefore\left[a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$

$=\left(a^{4}+b^{4}\right)\left(a^{8}-a^{4} b^{4}+b^{8}\right)$

$\therefore a^{12}+b^{12}=\left(a^{4}+b^{4}\right)\left(a^{8}-a^{4} b^{4}+b^{8}\right)$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now