Find the values of the other five trigonometric functions in each of the following
(i) $\cot x=\frac{12}{5}, x$ in quadrant III
(ii) $\cos x=-\frac{1}{2}, x$ in quadrant II
(iii) $\tan x=\frac{3}{4}, x$ in quadrant III
(iv) $\sin x=\frac{3}{5}, x$ in quadrant ।
(i) We have:
$\cot x=\frac{12}{5}$ and $x$ are in the third quadrant.
In the third quadrant, $\tan x$ and $\cot x$ are positive
A nd, $\sin x, \cos x, \sec x$ and $\operatorname{cosec} x$ are negative.
$\therefore \tan x=\frac{1}{\cot x}=\frac{1}{\frac{12}{5}}=\frac{5}{12}$
$\operatorname{cosec} x=-\sqrt{1+\cot ^{2} x}=-\sqrt{1+\left(\frac{12}{5}\right)^{2}}=-\frac{13}{5}$
$\sin x=\frac{1}{\operatorname{cosec} x}=\frac{1}{-\frac{13}{5}}=-\frac{5}{13}$
$\cos x=-\sqrt{1-\sin ^{2} x}=-\sqrt{1-\left(\frac{-5}{13}\right)^{2}}=\frac{-12}{13}$
And, $\sec x=\frac{1}{\cos x}=\frac{1}{\frac{-12}{13}}=\frac{-13}{12}$
(ii) We have :
$\cos x=-\frac{1}{2}$ and $x$ are in the second quadrant.
In the second quadrant, $\sin x$, and $\operatorname{cosec} x$ are positive.
And, $\tan x, \cot x, \cos x$ and $\sec x$ are negative.
$\therefore \sin x=\sqrt{1-\cos ^{2} x}=\sqrt{1-\left(\frac{-1}{2}\right)^{2}}=\frac{\sqrt{3}}{2}$
$\tan x=\frac{\sin x}{\cos x}=\frac{\sqrt{3} / 2}{-1 / 2}=-\sqrt{3}$
$\cot x=\frac{1}{\tan x}=\frac{1}{-\sqrt{3}}=\frac{-1}{\sqrt{3}}$
$\sec x=\frac{1}{\cos x}=\frac{1}{\frac{-1}{2}}=-2$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}$
(iii) We have:
$\tan x=\frac{3}{4}$ and $x$ are in the third quadrant.
In the third quadrant, $\tan x$, and $\cot x$ are positive.
And, $\sin x, \cos x, \sec x$ and $\operatorname{cosec} x$ are negative.
$\therefore \cot x=\frac{1}{\tan x}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$
$\sec x=-\sqrt{1+\tan ^{2} x}=-\sqrt{1+\left(\frac{3}{4}\right)^{2}}=-\frac{5}{4}$
$\cos x=\frac{1}{\sec x}=\frac{1}{-\frac{5}{4}}=-\frac{4}{5}$
$\sin x=-\sqrt{1-\cos ^{2} x}=-\sqrt{1-\left(\frac{-4}{5}\right)^{2}}=\frac{-3}{5}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{-\frac{3}{5}}=-\frac{5}{3}$
(iv) We have:
$\sin x=\frac{3}{5}$ and $x$ are in the first quadrant.
In the first quadrant, all six $\mathrm{T}$ - ratios are positive.
$\therefore \cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}$
$\tan x=\frac{\sin x}{\cos x}=\frac{3 / 5}{4 / 5}=\frac{3}{4}$
$\cot x=\frac{1}{\tan x}=\frac{1}{\frac{3}{4}}=\frac{4}{3}$
$\sec x=\frac{1}{\cos x}=\frac{1}{\frac{4}{5}}=\frac{5}{4}$
$\operatorname{cosec} x=\frac{1}{\sin x}=\frac{1}{\frac{3}{5}}=\frac{5}{3}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.