Find two positive numbers a and b, whose
(i) $\mathrm{AM}=25$ and $\mathrm{GM}=20$
(ii) $A M=10$ and $G M=8$
(i) AM = 25 and GM = 20
To find: Two positive numbers a and b
Given: AM = 25 and GM = 20
Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$
Arithmetic mean of two numbers $=\frac{a+b}{2}$
$\frac{a+b}{2}=25$
$\Rightarrow a+b=50$
$\Rightarrow b=50-a \ldots$ (i)
Geometric mean of two numbers $=\sqrt{a b}$
$\Rightarrow \sqrt{a b}=20$
$\Rightarrow a b=400$
Substituting value of b from eqn. (i)
$a(50-a)=400$
$\Rightarrow 50 a-a^{2}=400$
On rearranging
$\Rightarrow a^{2}-50 a+400=0$
$\Rightarrow a^{2}-40 a-10 a+400$
$\Rightarrow a(a-40)-10(a-40)=0$
$\Rightarrow(a-10)(a-40)=0$
$\Rightarrow a=10,40$
Substituting, a = 10 Or a = 40 in eqn. (i)
b = 40 Or b = 10
Therefore two numbers are 10 and 40
(ii) AM = 10 and GM = 8
To find: Two positive numbers a and b
Given: AM = 10 and GM = 8
Formula used: (i) Arithmetic mean between a and $b=\frac{a+b}{2}$
(ii) Geometric mean between a and $b=\sqrt{a b}$
Arithmetic mean of two numbers $=\frac{a+b}{2}$
$\frac{a+b}{2}=10$
$\Rightarrow a+b=20$
$\Rightarrow a=20-b \ldots$ (i)
Geometric mean of two numbers $=\sqrt{a b}$
$\Rightarrow \sqrt{a b}=8$
$\Rightarrow a b=64$
Substituting value of a from eqn. (i)
$b(20-b)=64$
$\Rightarrow 20 b-b^{2}=64$
On rearranging
$\Rightarrow b^{2}-20 b+64=0$
$\Rightarrow b^{2}-16 b-4 b+64$
$\Rightarrow b(b-16)-4(b-16)=0$
$\Rightarrow(b-16)(b-4)=0$
$\Rightarrow b=16,4$
Substituting, b = 16 Or b = 4 in eqn. (i)
a = 4 Or b = 16
Therefore two numbers are 16 and 4