Find x from the following equations:
(i) $\operatorname{cosec}\left(\frac{\pi}{2}+\theta\right)+x \cos \theta \cot \left(\frac{\pi}{2}+\theta\right)=\sin \left(\frac{\pi}{2}+\theta\right)$
(ii) $x \cot \left(\frac{\pi}{2}+\theta\right)+\tan \left(\frac{\pi}{2}+\theta\right) \sin \theta+\operatorname{cosec}\left(\frac{\pi}{2}+\theta\right)=0$
$90^{\circ}=\frac{\pi}{2}$
(i) We have,
$\operatorname{cosec}\left(90^{\circ}+\theta\right)+x \cos \theta \cot \left(90^{\circ}+\theta\right)=\sin \left(90^{\circ}+\theta\right)$
$\Rightarrow \sec \theta+x \cos \theta[-\tan \theta]=\cos \theta$
$\Rightarrow \sec \theta-x \cos \theta \tan \theta=\cos \theta$
$\Rightarrow \sec \theta-x \cos \theta \times \frac{\sin \theta}{\cos \theta}=\cos \theta$
$\Rightarrow \sec \theta-x \sin \theta=\cos \theta$
$\Rightarrow \sec \theta-\cos \theta=x \sin \theta$
$\Rightarrow \frac{1}{\cos \theta}-\cos \theta=x \sin \theta$
$\Rightarrow \frac{1-\cos ^{2} \theta}{0}=x \sin \theta$
$\Rightarrow \frac{\sin ^{2} \theta}{\cos \theta}=x \sin \theta$
$\Rightarrow \frac{\sin ^{2} \theta}{\cos \theta \sin \theta}=x$
$\Rightarrow \frac{\sin \theta}{\cos \theta}=x$
$\Rightarrow \tan \theta=x$
$\therefore \quad x=\tan \theta$
(ii) We have,
$x \cot \left(90^{\circ}+\theta\right)+\tan \left(90^{\circ}+\theta\right) \sin \theta+\operatorname{cosec}\left(90^{\circ}+\theta\right)=0$
$\Rightarrow x[-\tan \theta]+[-\cot \theta] \sin \theta+\sec \theta=0$
$\Rightarrow-x \tan \theta-\cot \theta \sin \theta+\sec \theta=0$
$\Rightarrow-x \times \frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\sin \theta} \times \sin \theta+\frac{1}{\cos \theta}=0$
$\Rightarrow-x \times \frac{\sin \theta}{\cos \theta}-\cos \theta+\frac{1}{\cos \theta}=0$
$\Rightarrow \frac{-x \sin \theta-\cos ^{2} \theta+1}{\cos \theta}=0$
$\Rightarrow-x \sin \theta-\cos ^{2} \theta+1=0$
$\Rightarrow-x \sin \theta+\sin ^{2} \theta=0$
$\Rightarrow x \sin \theta=\sin ^{2} \theta$
$\Rightarrow x=\frac{\sin ^{2} \theta}{\sin \theta}$
$\Rightarrow x=\sin \theta$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.