For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,-1)$.
The differential equation of the given curve is:
$x y \frac{d y}{d x}=(x+2)(y+2)$
$\Rightarrow\left(\frac{y}{y+2}\right) d y=\left(\frac{x+2}{x}\right) d x$
$\Rightarrow\left(1-\frac{2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x$
Integrating both sides, we get:
$\int\left(1-\frac{2}{y+2}\right) d y=\int\left(1+\frac{2}{x}\right) d x$
$\Rightarrow \int d y-2 \int \frac{1}{y+2} d y=\int d x+2 \int \frac{1}{x} d x$
$\Rightarrow y-2 \log (y+2)=x+2 \log x+\mathrm{C}$
$\Rightarrow y-x-\mathrm{C}=\log x^{2}+\log (y+2)^{2}$
$\Rightarrow y-x-\mathrm{C}=\log \left[x^{2}(y+2)^{2}\right]$ ...(1)
Now, the curve passes through point (1, –1).
$\Rightarrow-1-1-C=\log \left[(1)^{2}(-1+2)^{2}\right]$
$\Rightarrow-2-C=\log 1=0$
$\Rightarrow C=-2$
Substituting $C=-2$ in equation $(1)$, we get:
$y-x+2=\log \left[x^{2}(y+2)^{2}\right]$
This is the required solution of the given curve.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.