Given that $\tan \theta=\frac{1}{\sqrt{3}}$, the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$ is
(a) − 1
(b) 1
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
Given: $\tan \theta=\frac{1}{\sqrt{3}}$
We have to find the value of the following expression
$\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}$
Now $\tan \theta=\frac{1}{\sqrt{3}}$, so
perpendicular =1
base $=\sqrt{3}$
and
hypotenus $=\sqrt{(\text { base })^{2}+(\text { perpendicular })^{2}}$
$=\sqrt{(\sqrt{3})^{2}+1^{2}}$
$=\sqrt{3+1}$
$=2$
Therefore
$\operatorname{cosec} \theta=\frac{\text { hypotenus }}{\text { perpendicular }}$
$=\frac{2}{1}=2$
and
$\sec \theta=\frac{\text { hypotenus }}{\text { base }}$
$=\frac{2}{\sqrt{3}}$
Put the above two values in the given expression, we have
$\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\sec ^{2} \theta}=\frac{(2)^{2}-\left(\frac{2}{\sqrt{3}}\right)^{2}}{(2)^{2}+\left(\frac{2}{\sqrt{3}}\right)^{2}}$
$=\frac{4-\frac{4}{3}}{4+\frac{4}{3}}$
$=\frac{1}{2}$
Hence the correct option is $(c)$