How many terms of the A.P. $-6,-\frac{11}{2},-5, \ldots$ are needed to give the sum $-25 ?$
Let the sum of n terms of the given A.P. be –25.
It is known that, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, where $n=$ number of terms, $a=$ first term, and $d=$ common difference
Here, $a=-6$
$d=-\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}$
Therefore, we obtain
$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$
$\Rightarrow-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$
$\Rightarrow-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$
$\Rightarrow-100=n(-25+n)$
$\Rightarrow n^{2}-25 n+100=0$
$\Rightarrow n^{2}-5 n-20 n+100=0$
$\Rightarrow n(n-5)-20(n-5)=0$
$\Rightarrow n=20$ or 5
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.