Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

If θ1, θ2, θ3, …, θn are in A.P.,


 If θ1, θ2, θ3, …, θn are in A.P., whose common difference is d, show that Sec θ1 sec θ2 + sec θ2 sec θ3 + … + sec θn–1 sec θn

$=\frac{\tan \theta_{\mathrm{n}}-\tan \theta_{1}}{\sin \mathrm{d}}$


Given $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in A.P., and common difference is $d$, Now we have to prove that

$\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\ldots+\sec \theta_{n-1} \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}$

On cross multiplication we get

$\Rightarrow \sin d\left(\sec \theta_{1} \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\ldots+\sec \theta_{n-1} \sec \theta_{n}\right)=\tan \theta_{n}-\tan \theta_{1}$

We know sec $x=1 / \cos x$ using this formula we get

$\Rightarrow \frac{\sin d}{\cos \theta_{1} \cos \theta_{2}}+\frac{\text { sind }}{\cos \theta_{2} \cos \theta_{3}}+\cdots+\frac{\operatorname{sind}}{\cos \theta_{n-1} \cos \theta_{n}}=\tan \theta_{n}-\tan \theta_{1}$

Consider LHS

$\Rightarrow \mathrm{LHS}=\frac{\text { sind }}{\cos \theta_{1} \cos \theta_{2}}+\frac{\text { sind }}{\cos \theta_{2} \cos \theta_{3}}+\cdots+\frac{\text { sind }}{\cos \theta_{\mathrm{n}-1} \cos \theta_{\mathrm{n}}}$

Now we have to find value of $d$ in terms of $\theta$ so that further simplification can be made

As $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in AP having common difference as $d$


$\theta_{2}-\theta_{1}=d, \theta_{3}-\theta_{2}=d, \ldots, \theta_{n}-\theta_{n-1}=d$

Take sin on both sides

$\sin \left(\theta_{2}-\theta_{1}\right)=\sin d, \sin \left(\theta_{3}-\theta_{2}\right)=\sin d, \ldots, \sin \left(\theta_{n}-\theta_{n-1}\right)=\sin d$

Substitute appropriate value of sin d for each term in LHS

$\Rightarrow \mathrm{LHS}=\frac{\sin \left(\theta_{2}-\theta_{1}\right)}{\cos \theta_{1} \cos \theta_{2}}+\frac{\sin \left(\theta_{3}-\theta_{2}\right)}{\cos \theta_{2} \cos \theta_{3}}+\cdots+\frac{\sin \left(\theta_{\mathrm{n}}-\theta_{\mathrm{n}-1}\right)}{\cos \theta_{\mathrm{n}-1} \cos \theta_{\mathrm{n}}}$

We know that $\sin (a-b)=\sin a \cos b-\cos a \sin b$

Using this formula we get

$\Rightarrow \mathrm{LHS}=\frac{\sin \theta_{2} \cos \theta_{1}-\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}+\frac{\sin \theta_{3} \cos \theta_{2}-\cos \theta_{3} \sin \theta_{2}}{\cos \theta_{2} \cos \theta_{3}}+\cdots$

On simplifying we get

$=\frac{\sin \theta_{2} \cos \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}-\frac{\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}+\frac{\sin \theta_{3} \cos \theta_{2}}{\cos \theta_{2} \cos \theta_{3}}-\frac{\cos \theta_{3} \sin \theta_{2}}{\cos \theta_{2} \cos \theta_{3}}+\cdots+\frac{\sin \theta_{n} \cos \theta_{n-1}}{\cos \theta_{n-1} \cos \theta_{n}}$ $-\frac{\cos \theta_{n} \sin \theta_{n-1}}{\cos \theta_{n-1} \cos \theta_{n}}$

We know that $\sin x / \cos x=\tan x$

$=\tan \theta_{2}-\tan \theta_{1}+\tan \theta_{3}-\tan \theta_{2}+\ldots+\tan \theta_{n}-\tan \theta_{n-1}$

$=-\tan \theta_{1}+\tan \theta_{n}$

$=\tan \theta_{n}-\tan \theta_{1}$

$\Rightarrow \mathrm{LHS}=\mathrm{RHS}$

Hence proved

Leave a comment

Free Study Material