If

Question:

If $\frac{z-\alpha}{z+\alpha}(\alpha \in \mathrm{R})$ is a purely imaginary number and $|\mathrm{z}|=2$, then a value of $\alpha$ is :

 

  1. (1) 2

  2. (2) 1

  3. (3) $\frac{1}{2}$

  4. (4) $\sqrt{2}$


Correct Option: 1

Solution:

Let $t=\frac{z-\alpha}{z+\alpha}$

$\because t$ is purely imaginary number.

$\therefore \quad t+\bar{t}=0$

$\Rightarrow \quad \frac{z-\alpha}{z+\alpha}+\frac{\bar{z}-\alpha}{\bar{z}+\alpha}=0$

$\Rightarrow \quad(z-\alpha)(\bar{z}+\alpha)+(\bar{z}-\alpha)(z+\alpha)=0$

$\Rightarrow \quad z \bar{z}-\alpha^{2}+z \bar{z}-\alpha^{2}=0$

$\Rightarrow \quad z \bar{z}-\alpha^{2}=0$

$\Rightarrow \quad|z|^{2}-\alpha^{2}=0$

$\Rightarrow \quad \alpha^{2}=4$

$\Rightarrow \quad \alpha=\pm 2$

 

Leave a comment