Question:
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Solution:
We have,
a +b = 3, ab = p, c + d =12 and cd = q
a, b, c and d form a G.P.
∴ First term = a, b = ar, c = ar2 and d = ar3
Then, we have
a + b = 3 and c + d = 12
$\Rightarrow a+a r=3$
$\Rightarrow a(1+r)=3$ ...(1)
Similarly, $a r^{2}(1+r)=12$ ...(2)
$\Rightarrow \frac{a r^{2}(1+r)}{a(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=2$
$\therefore a(1+r)=3$
$\Rightarrow a=1$
Now, $p=a b$
$\Rightarrow p=a \times a r=2$ And,
$q=c d$
$\Rightarrow q=a r^{2} \times a r^{3}=2^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$