If A + B + C = π, prove that
$\cos 2 A-\cos 2 B-\cos 2 C=-1+4 \cos A \sin B \sin C$
$=\cos 2 A-(\cos 2 B+\cos 2 C)$
Using formula
$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$=\cos 2 A-\left\{2 \cos \left(\frac{2 B+2 C}{2}\right) \cos \left(\frac{2 B-2 C}{2}\right)\right\}$
$=\cos 2 A-\{2 \cos (B+C) \cos (B-C)\}$
Since $A+B+C=\pi$
$\rightarrow \mathrm{B}+\mathrm{C}=180-\mathrm{A}$
$=\cos 2 \mathrm{~A}-\{2 \cos (\pi-\mathrm{A}) \cos (\mathrm{B}-\mathrm{C})\}$
And $\cos (\pi-A)=-\cos A$
$=\cos 2 A-\{-2 \cos A \cos (B-C)\}$
$=\cos 2 A+2 \cos A \cos (B-C)$
Using $\cos 2 A=2 \cos ^{2} A-1$
$=2 \cos ^{2} A-1+2 \cos A \cos (B-C)$
$=2 \cos A\{\cos A+\cos (B-C)\}-1$
Using, $\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$=2 \cos A\left\{2 \cos \left(\frac{A+B-C}{2}\right) \cos \left(\frac{A+C-B}{2}\right)\right\}-1$
$=2 \cos A\left\{2 \cos \left(\frac{\pi-C-C}{2}\right) \cos \left(\frac{\pi-B-B}{2}\right)\right\}-1$
As, $\cos \left(\frac{\pi}{2}-\mathrm{A}\right)=\sin \mathrm{A}$
$=2 \cos A\left\{2 \cos \left(\frac{\pi}{2}-\frac{2 C}{2}\right) \cos \left(\frac{\pi}{2}-\frac{2 B}{2}\right)\right\}-1$
$=2 \cos A\{2 \sin C \sin B\}-1$
$=4 \cos A \sin B \sin C-1$
= R.H.S