If a function f :

Question:

If a function f : R → R be defined by

$f(x)=\left\{\begin{array}{cc}3 x-2, & x<0 \\ 1, & x=0 \\ 4 x+1, & x>0\end{array}\right.$

find: f(1), f(−1), f(0) and f(2).

Solution:

(1) = 4 × 1 + 1 = 5          [By using f (x) = 4x + 1, x > 0]

$f(-1)=3 \times(-1)-2 \quad$ [By using $f(x)=3 x-2, x<0]$

$=-3-2=-5$

f (0) = 1                             [By using f (x) = 1, x = 0]

f (2) = 4 × 2 + 1                 [By using f (x) = 4x + 1, x > 0]

= 9

Hence,

(1) = 5, f (-">-1) = -">- 5, f (0) = 1 and f (2) = 9.

Leave a comment