Question:
If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.
Solution:
Let the root of the quadratic equation be a and b.
According to the given condition,
A.M. $=\frac{a+b}{2}=8 \Rightarrow a+b=16$ $\ldots(1)$
G.M. $=\sqrt{a b}=5 \Rightarrow a b=25$ $\ldots(2)$
G.M. $=\sqrt{a b}=5 \Rightarrow a b=25$
The quadratic equation is given by,
$x^{2}-x$ (Sum of roots) $+$ (Product of roots) $=0$
$x^{2}-x(a+b)+(a b)=0$
$x^{2}-16 x+25=0[U \operatorname{sing}(1)$ and $(2)]$
Thus, the required quadratic equation is $x^{2}-16 x+25=0$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.