If n(A ∩ B) = 5, n(A ∩ C) = 7 and n(A ∩ B ∩ C) = 3,

Question:

If n(A ∩ B) = 5, n(A ∩ C) = 7 and n(A ∩ ∩ C) = 3, then the minimum possible value of n(B ∩ C) is ____________.

Solution:

If n(A ∩ B) = 5
n(A ∩ C) = 7
n(A ∩ ∩ C) = 3
Then the minimum possible value of n(B ∩ C

Since n(⋃ ⋃ C)  = n(A) + n(B) + n(C) – n(∩ B) – n(∩ C) – n(∩ A) + n(A ∩ B ∩ C )

Since A ∩ ∩ ≤ ∩ C

⇒ n(∩ ∩ C) ≤ n(∩ C)

⇒ 3 ≤ n(∩ C)

∴ minimum possible value of n(∩ C) = 3

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now