Question.
If Q (0,1) is equidistant from P(5, – 3) and R(x, 6), find the values of x. Also find the distances QR and PR.
If Q (0,1) is equidistant from P(5, – 3) and R(x, 6), find the values of x. Also find the distances QR and PR.
Solution:
Here, $Q P=\sqrt{(5-0)^{2}+\mid(-3)-11^{2}}=\sqrt{5^{2}+(-4)^{2}}$
$=\sqrt{25+16}=\sqrt{41}$
$Q R=\sqrt{(x-0)^{2}+(6-1)^{2}}=\sqrt{x^{2}+5^{2}}=\sqrt{x^{2}+25}$
$\because \quad \mathrm{QP}=\mathrm{QR}$
$\therefore \quad \sqrt{41}=\sqrt{x^{2}+25}$
Squaring both sides, we have $x^{2}+25=41$
$\Rightarrow x^{2}+25-41=0$
$\Rightarrow x^{2}-16=0 \Rightarrow x=\pm \sqrt{\mathbf{1 6}}=\pm 4$
Thus, the point R is (4, 6) or (–4, 6)
Now,
$Q R=\sqrt{((+4)-(0))^{2}+(6-1)^{2}}=\sqrt{16+25}=\sqrt{41}$
and $P R=\sqrt{(+4-5)^{2}+(6+3)^{2}}$
$\Rightarrow P R=\sqrt{(-4-5)^{2}+(6+3)^{2}}$
or $\sqrt{(4-5)^{2}+(6+3)^{2}}$
$\Rightarrow P R=\sqrt{(-9)^{2}+9^{2}}$ or $\sqrt{\mathbf{1}+\mathbf{8 1}}$
$\Rightarrow P R=\sqrt{\mathbf{2} \times \mathbf{9}^{2}}$ or $\sqrt{\mathbf{8 2}}$
$\Rightarrow P R=\mathbf{9} \sqrt{\mathbf{2}}$ or $\sqrt{\mathbf{8 2}}$
Here, $Q P=\sqrt{(5-0)^{2}+\mid(-3)-11^{2}}=\sqrt{5^{2}+(-4)^{2}}$
$=\sqrt{25+16}=\sqrt{41}$
$Q R=\sqrt{(x-0)^{2}+(6-1)^{2}}=\sqrt{x^{2}+5^{2}}=\sqrt{x^{2}+25}$
$\because \quad \mathrm{QP}=\mathrm{QR}$
$\therefore \quad \sqrt{41}=\sqrt{x^{2}+25}$
Squaring both sides, we have $x^{2}+25=41$
$\Rightarrow x^{2}+25-41=0$
$\Rightarrow x^{2}-16=0 \Rightarrow x=\pm \sqrt{\mathbf{1 6}}=\pm 4$
Thus, the point R is (4, 6) or (–4, 6)
Now,
$Q R=\sqrt{((+4)-(0))^{2}+(6-1)^{2}}=\sqrt{16+25}=\sqrt{41}$
and $P R=\sqrt{(+4-5)^{2}+(6+3)^{2}}$
$\Rightarrow P R=\sqrt{(-4-5)^{2}+(6+3)^{2}}$
or $\sqrt{(4-5)^{2}+(6+3)^{2}}$
$\Rightarrow P R=\sqrt{(-9)^{2}+9^{2}}$ or $\sqrt{\mathbf{1}+\mathbf{8 1}}$
$\Rightarrow P R=\sqrt{\mathbf{2} \times \mathbf{9}^{2}}$ or $\sqrt{\mathbf{8 2}}$
$\Rightarrow P R=\mathbf{9} \sqrt{\mathbf{2}}$ or $\sqrt{\mathbf{8 2}}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.