If S1, S2, S3 are the sum of first n natural numbers,


If $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are the sum of first $n$ natural numbers, their squares and their cubes, respectively, show that $9 \mathrm{~S}_{2}^{2}=\mathrm{S}_{3}\left(1+8 \mathrm{~S}_{1}\right)$


From the given information,



Here, $S_{3}\left(1+8 S_{1}\right)=\frac{n^{2}(n+1)^{2}}{4}\left[1+\frac{8 n(n+1)}{2}\right]$

$=\frac{n^{2}(n+1)^{2}}{4}\left[1+4 n^{2}+4 n\right]$

$=\frac{n^{2}(n+1)^{2}}{4}(2 n+1)^{2}$

$=\frac{[n(n+1)(2 n+1)]^{2}}{4}$ ..(1)

Also, $9 S_{2}^{2}=9 \frac{[n(n+1)(2 n+1)]^{2}}{(6)^{2}}$

$=\frac{9}{36}[n(n+1)(2 n+1)]^{2}$

$=\frac{[n(n+1)(2 n+1)]^{2}}{4}$ $\ldots(2)$

Thus, from (1) and (2), we obtain $9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right)$

Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now