`
Question:
If sec θ + tan θ + 1 = 0 then (sec θ – tan θ) = ?
(a) 1
(b) –1
(c) 0
(d) 2
Solution:
Given: $\sec \theta+\tan \theta+1=0$
$\sec \theta+\tan \theta+1=0$
$\Rightarrow \sec \theta+\tan \theta=-1$
Multiplying and dividing LHS by $\sec \theta-\tan \theta$, we get
$\Rightarrow(\sec \theta+\tan \theta) \times\left(\frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow\left(\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow\left(\frac{1+\tan ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}\right)=-1 \quad\left(\because \sec ^{2} \theta=1+\tan ^{2} \theta\right)$
$\Rightarrow\left(\frac{1}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow(\sec \theta-\tan \theta)=-1$
Hence, the correct option is (b).