Question:
If $\tan x+\cot x=4$, then $\tan ^{4} x+\cot ^{4} x=$ ___________.
Solution:
Given tan x + cot x = 4
Since $\left(\tan ^{2} x+\cot ^{2} x\right)^{2}=\tan ^{4} x+\cot ^{4} x+2 \cot ^{2} x \tan ^{2} x$
i.e $\left(\tan ^{2} x+\cot ^{2} x\right)^{2}=\tan ^{4} x+\cot ^{4} x+2$
i. e $\tan ^{4} x+\cot ^{4} x=\left(\tan ^{2} x+\cot ^{2} x\right)^{2}-2$ ....(1)
also, $(\tan x+\cot x)^{2}=(4)^{2}$
i. e $\tan ^{2} x+\cot ^{2} x+2 \cot x \tan x=16$
$\tan ^{2} x+\cot ^{2} x+2=16$
$\tan ^{2} x+\cot ^{2} x=14$
$\therefore$ equation (1), reduces to
$\tan ^{4} x+\cot ^{4} x=(14)^{2}-2$
i. e $\tan ^{4} x+\cot ^{4} x=194$