Question:
If the 5th and 12th terms of an A.P. are 30 and 65 respectively, what is the sum of first 20 terms?
Solution:
We have;
$a_{5}=30$
$\Rightarrow a+(5-1) d=30$
$\Rightarrow a+4 d=30 \quad \ldots(\mathrm{i})$
Also, $a_{12}=65$
$\Rightarrow a+(12-1) d=65$
$\Rightarrow a+11 d=65 \quad \ldots \ldots($ ii $)$
Solving (i) and (ii), we get:
$7 d=35$
$\Rightarrow d=5$
Putting the value of $d$ in (i), we get:
$a+4 \times 5=30$
$\Rightarrow a=10$
$\therefore S_{20}=\frac{20}{2}[2 \times 10+(20-1) \times 5]$
$\Rightarrow S_{20}=10[2 \times 10+(20-1) \times 5]$
$\Rightarrow S_{20}=1150$