If $f(x)=3 x^{2}+15 x+5$, then the approximate value of $f(3.02)$ is
A. 47.66 B. 57.66 C. 67.66 D. 77.66
Let $x=3$ and $\Delta x=0.02$. Then, we have:
$f(3.02)=f(x+\Delta x)=3(x+\Delta x)^{2}+15(x+\Delta x)+5$
Now, $\Delta y=f(x+\Delta x)-f(x)$
$\begin{aligned} \Rightarrow f(x+\Delta x) &=f(x)+\Delta y \\ & \approx f(x)+f^{\prime}(x) \Delta x \end{aligned}$ $($ As $d x=\Delta x)$
$\Rightarrow f(3.02) \approx\left(3 x^{2}+15 x+5\right)+(6 x+15) \Delta x$
$=\left[3(3)^{2}+15(3)+5\right]+[6(3)+15](0.02) \quad[$ As $x=3, \Delta x=0.02]$
$=(27+45+5)+(18+15)(0.02)$
$=77+(33)(0.02)$
$=77+0.66$
$=77.66$
Hence, the approximate value of f(3.02) is 77.66.
The correct answer is D.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.