If the adjoining figure is a sector of a circle of radius $10.5 \mathrm{~cm}$, what is the perimeter of the sector? (Take $\pi=22 / 7$ )
Given figure is a quadrant of a circle. We have given radius of sector that is 10.5 cm. Arc AB subtended an angle of 60° at the centre of the circle.
Perimeter of the sector $=\frac{\theta}{360} \times 2 \pi r+2 r$
Substituting the values we get,
Perimeter of the sector $=\frac{60}{360} \times 2 \pi \times 10.5+2 \times 10.5$
Now we will simplify equation (1) as shown below,
Perimeter of the sector $=\frac{1}{6} \times 2 \pi \times 10.5+2 \times 10.5$
Perimeter of the sector $=\frac{1}{6} \times 21 \pi+21$
Now we will substitute $\pi=\frac{22}{7}$.
Perimeter of the sector $=\frac{1}{6} \times 21 \times \frac{22}{7}+21$
Perimeter of the sector $=\frac{1}{6} \times 3 \times 22+21$
Perimeter of the sector $=11+21$
Perimeter of the sector $=32$
Therefore, perimeter of the given sector is $32 \mathrm{~cm}$.