If the HCF of 657 and 963 is expressible in the form 657x + 963 × – 15, find x.
We need to find $x$ if the H.C.F of 657 and 963 is expressible in the form $657 x+963 y(-15)$.
Given integers are 657 and 963.
By applying Euclid's division lemma, we get $963=657 \times 1+306$.
Since the remainder $\neq 0$, so apply division lemma on divisor 657 and remainder 306
$657=306 \times 2+45$
Since the remainder $\neq 0$, so apply division lemma on divisor 306 and remainder 45
$306=45 \times 6+36$
Since the remainder $\neq 0$, so apply division lemma on divisor 45 and remainder 36
$45=36 \times 1+9$
Since the remainder $\neq 0$, so apply division lemma on divisor 36 and remainder 9
$36=9 \times 4+0$
Therefore, H.C.F. = 9.
Given H.C.F $=657 x+936(-15)$.
Therefore,
$\Rightarrow \quad 9=657 x-14445$
$\Rightarrow \quad 9+14445=657 x$
$\Rightarrow \quad 14454=657 x$
$\Rightarrow \quad x=\frac{14454}{657}$
$\Rightarrow \quad x=22$