If the line y=m x bisects the area enclosed by the lines

Question:

If the line $y=m x$ bisects the area enclosed by the lines $x=0, y=0, x=\frac{3}{2}$ and the curve $y=1+4 x-x^{2}$, then $12 m$ is equal to________.

Solution:

Total area $=\int_{0}^{3 / 2}\left(1+4 x-x^{2}\right) d x$

$=x+2 x^{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{3 / 2}=\frac{39}{8}$

$\& \frac{39}{16}=\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \mathrm{~m}$

$\Rightarrow 3 \mathrm{~m}=\frac{13}{2} \Rightarrow 12 \mathrm{~m}=26$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now