If the medians of a AABC intersect at G, then show that ar (ΔAGB) = ar (ΔAGC) = ar (ΔBGC) = 1/3 ar(ΔABC).
Thinking Process
Use the property that median of a triangle divides it into two triangles of equal area.
Further, apply above property by considering different triangles and prove the required result.
Given In ΔABC, AD, BE and CF are medians and intersect at G.
To prove ar $(\Delta A G B)=\operatorname{ar}(\Delta A G C)=\operatorname{ar}(\Delta B G C)=\frac{1}{3} \operatorname{ar}(\Delta A B C)$
Proof We know that, a median of a triangle divides it into two triangles of equal area. In $\triangle A B C, A D$ is a median.
$\therefore \quad a r(\Delta A B D)=\operatorname{ar}(\triangle A C D)$ $\ldots(\mathrm{i})$
In $\triangle B G C, G D$ is a median.
$\therefore \quad a r(\Delta G B D)=\operatorname{ar}(\Delta G C D)$ ....(ii)
On subtracting Eq. (ii) from Eq. (i), we get
$\operatorname{ar}(\Delta A B D)-\operatorname{ar}(\Delta G B D)=\operatorname{ar}(\triangle A C D)-\operatorname{ar}(\Delta G C D)$
$\Rightarrow \quad \operatorname{ar}(\Delta A G B)=\operatorname{ar}(\triangle A G C)$ ....(iii)
Similarly,
$\operatorname{ar}(\Delta A G B)=\operatorname{ar}(\Delta B G C)$
From Eqs. (iii) and (iv).
$\operatorname{ar}(\Delta A G B)=\operatorname{ar}(\Delta B G C)=\operatorname{ar}(\Delta A G C)$ $\ldots(\mathrm{v})$
NOW,
$\operatorname{ar}(\Delta A B C)=\operatorname{ar}(\Delta A G B)+\operatorname{ar}(\Delta B G C)+\operatorname{ar}(\Delta A G C)$
$\Rightarrow \quad \operatorname{ar}(\Delta A B C)=\operatorname{ar}(\Delta A G B)+\operatorname{ar}(\Delta A G B)+\operatorname{ar}(\Delta A G B) \quad$ [from Eq. (v)]
$\Rightarrow \quad \operatorname{ar}(\Delta A B C)=3 \operatorname{ar}(\Delta A G B)$
$\Rightarrow \quad \operatorname{ar}(\Delta A G B)=\frac{1}{3} \operatorname{ar}(\Delta A B C)$ $\ldots(\mathrm{vi})$
From Eqs. (v) and (vi),
$\operatorname{ar}(\Delta B G C)=\frac{1}{3} \operatorname{ar}(\Delta A B C)$
and $\operatorname{ar}(\triangle A G C)=\frac{1}{3} \operatorname{ar}(\Delta A B C)$
Hence proved.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.