If the selling price of 10 pens is equal to cost price of 14 pens, find the gain percent.
Let the cost price of one pen be Rs. C, and the selling price be Rs. S
Therefore, $10 \mathrm{~S}=14 \mathrm{C}$
$\mathrm{C}=\frac{10}{14} \mathrm{~S}$
However, the cost price is less than the selling price.
S. P. $=\left(\frac{100+\text { profit } \%}{100}\right)$ C.P
S $=\left(\frac{100+\text { profit } \%}{100}\right)$ C
$\frac{\text { S }}{\text { C }}=\left(\frac{100+\text { profit } \%}{100}\right)$
$\frac{14}{10}=\left(\frac{100+\text { profit } \%}{100}\right)$
$\frac{1400}{10}=100+$ profit $\%$
$140-100=$ profit $\%$
Profit $\%=40$
$=40 \%$
Therefore, the required profit percent is $40 \%$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.