If the solve the problem


$f(x)=\frac{x}{2}+\frac{2}{x}, x>0$


Given: $f(x)=\frac{x}{2}+\frac{2}{x}$

$\Rightarrow f^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}$

For the local maxima or minima, we must have


$\Rightarrow \frac{1}{2}-\frac{2}{x^{2}}=0$

$\Rightarrow \frac{1}{2}=\frac{2}{x^{2}}$

$\Rightarrow x^{2}=\pm 2$

Since $x>0, f^{\prime}(x)$ changes from negative to positive when $x$ increases through $2 .$ So, $x=2$ is a point of local minima.

The local minimum value of $f(x)$ at $x=2$ is given by


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now