If the solve the problem

If $x$ lies in the interval $[0,1]$, then the least value of $x 2+x+1$ is

(a) 3

(b) $\frac{3}{4}$

(C) 1

(d) none of these


(c) 1

Given : $f(x)=x^{2}+x+1$

$\Rightarrow f^{\prime}(x)=2 x+1$

For a local maxima or a local minima, we must have’


$\Rightarrow 2 x+1=0$

$\Rightarrow 2 x=-1$

$\Rightarrow x=\frac{-1}{2} \notin[0,1]$

At extreme points :



So, $x=1$ is a local minima.


Leave a comment

Please enter comment.
Please enter your name.